Learning hybrid neuro-fuzzy classifier models from data: to combine or not to combine?

نویسنده

  • Bogdan Gabrys
چکیده

To combine or not to combine? Though not a question of the same gravity as the Shakespeare’s to be or not to be, it is examined in this paper in the context of a hybrid neuro-fuzzy pattern classifier design process. A general fuzzy min-max neural network with its basic learning procedure is used within six different algorithm independent learning schemes. Various versions of cross-validation, resampling techniques and data editing approaches, leading to a generation of a single classifier or a multiple classifier system, are scrutinised and compared. The classification performance on unseen data, commonly used as a criterion for comparing different competing designs, is augmented by further four criteria attempting to capture various additional characteristics of classifier generation schemes. These include: the ability to estimate the true classification error rate, the classifier transparency, the computational complexity of the learning scheme and the potential for adaptation to changing environments and new classes of data. One of the main questions examined is whether and when to use a single classifier or a combination of a number of component classifiers within a multiple classifier system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning hybrid neuro-fuzzy classi(er models from data: to combine or not to combine?

To combine or not to combine? This very important question is examined in this paper in the context of a hybrid neuro-fuzzy pattern classi(er design process. A general fuzzy min–max neural network with its basic learning procedure is used within (ve di3erent algorithm-independent learning schemes. Various versions of cross-validation and resampling techniques, leading to generation of a single ...

متن کامل

Hierarchical Neuro-Fuzzy Systems Part I

Neuro-fuzzy [Jang,1997][Abraham,2005] are hybrid systems that combine the learning capacity of neural nets [Haykin,1999] with the linguistic interpretation of fuzzy inference systems [Ross,2004]. These systems have been evaluated quite intensively in machine learning tasks. This is mainly due to a number of factors: the applicability of learning algorithms developed for neural nets; the possibi...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Neuro-fuzzy-combiner: an effective multiple classifier system

A neuro-fuzzy-combiner (NFC) is proposed to design an efficient multiple classifier system (MCS) with an aim to have an effective solution scheme for difficult classification problems. Although, a number of combiners exist in the literature, they do not provide consistently good performance on different datasets. In this scenario: 1 we propose an effective multiple classifier system (MCS) based...

متن کامل

Modular Neuro-Fuzzy Networks Used in Explicit and Implicit Knowledge Integration

A framework of new unified neural and neuro-fuzzy approaches for integrating implicit and explicit knowledge in neuro-symbolic systems is proposed. In the developed hybrid system, training data set is used for building neurofuzzy modules, and represents implicit domain knowledge. On the other hand, the explicit domain knowledge is represented by fuzzy rules, which are directly mapped into equiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2004